Dynamics and Thermodynamics in Nuclear Heavy-Ion Collisions

I. Introduction: Testing the nuclear A-body system in heavy-ion collisions

II. Experimental Techniques

III. Dynamics of heavy-ion collisions at medium energies

IV. Thermodynamics of hot nuclear fragments

Collaboration
U. Rochester (J. Toke, W. Gawlikowicz, J. Lu, WUS)
Washington U. (R.G. Charity, L.G. Sobotka)
Indiana U. (R.T.deSouza)
Isospin-Dependent In-Medium Effects

Mean Field (Energy)

NN Interaction

Residual Interactions

density dependent

NN Correlations Fluctuations

W. Udo Schröder, 2003
Isospin-Dependent Nucleus-Nucleus Interactions

Isovector Proximity Potential FF

Density Distributions

2-Body Friction FF

Coherent, Diabatic Emission of Nucleons

Stochastic Emission of Preequil.-Cascade Nucleons

W. Udo Schroder, 2003
Characteristic Times and Lengths

Velocity of sound:
\[v_s = 0.2 \, c = 6 \, \text{fm}/(10^{-22} \, \text{sec}) \]

D. Udo Schröder, 2003
Intrinsic degrees of freedom:

\[t_{\text{relax}} \approx 3.3 \times 10^{-20} \text{s} / E_p (\text{MeV}) \]
\[\sim 10^{-22} \text{s} \]

Collective shape degrees of freedom:

\[t_{\text{deform}} \sim 10^{-21} \text{s} \text{ (reactions)} \]
\[\sim 10^{-19} \text{s} \text{ (fission)} \]
Equilibration vs. Decay

Thermal relaxation times (BUU) decrease with T. Slower relaxation at higher density ρ.

Particle evaporation times from experimental CN systematics. Uncertain ~ 10.

Limits to heat generation in nuclei
Experimental Methods

Highly excited reaction products \(\rightarrow\) measure as many products as possible with broad dynamic range:

- neutrons, p, d, t ..., IMF clusters, PLF, TLF over entire angular range \((\Omega \approx 4\pi)\)

Develop observables measuring \(E^*\) (kinetic E-loss)

\(\rightarrow\) impact parameter/”violence” of collision
SuperBall/Dwarf Calorimeter

4π measurement of neutrons \rightarrow excitation energy, impact parameter

4π measurement of charged particles

W. Udo Schröder, 2003
Thermal Observables: Joint Multiplicity Distributions

Probability distribution of neutrons and lcp's from the reaction $^{209}\text{Bi} + ^{136}\text{Xe}$ at $E/A=62$ MeV (log contour diagram).

Dotted: average ridge lines for $E/A=28$, 40, 62 MeV.

$\rightarrow \rightarrow E^*, \ b$

\[
P(E^*) = \tilde{P}\left[P\left(m_n,m_{LCP}\right)\right]
\]

\[
P'(b) = \tilde{P}'\left[P\left(m_n,m_{LCP}\right)\right]
\]

W. Udo Schröder, 2003
Random emission leads to a spherically symmetric emission patterns in velocity space.

→ Plot Galilei-invariant cross sections.
The Experimental Filter

Energy resolution, angular resolution (granularity), detection/ID thresholds all distort the ideal kinematical (circular) pattern
Nuclear Dynamics

- Gross properties of nuclear reactions (coupling of intrinsic to macroscopic variables) → Transport models (NEM, BUU/BNV, QMD,...)

- deflection functions, dissipation and mass transfer, equilibration

- Fast (non-equilibrium) processes → nucleon and cluster emission (breakup/fracture)

- Slow, sequential (equilibrium) processes → nucleon and cluster evaporation
Sensitivity of Deflection Functions

Standard dynamical NEM calculation. Observables

\[\tilde{x} = \{x_i\} = \{A_{PLF}, Z_{PLF}, r, \ell, \text{shape}\} \]

t-dependent joint probability distribution \(P(\tilde{x}, t) \) for macroscopic observables:

Fokker-Planck Equation

\[
\frac{\partial}{\partial t} P(\tilde{x}, t) = -\sum_i \frac{\partial}{\partial x_i} \{v_i P(\tilde{x}, t)\} \\
+ \sum_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} \{D_{i,j} P(\tilde{x}, t)\}
\]

Lagrange-Rayleigh Equ.

\[
\left\{ \frac{d}{dt} \frac{\partial}{\partial \tilde{x}_i} - \frac{\partial}{\partial \tilde{x}_i} \right\} \mathbf{L} = -\frac{\partial}{\partial \tilde{x}_i} \mathbf{F}
\]
PLF Deflection Functions/E-Z Distributions

28 MeV/nucleon 62 MeV/nucleon $^{209}\text{Bi} + ^{136}\text{Xe}$

NEM:
Stable $\langle Z_{\text{PLF}} \rangle \approx Z_{\text{proj}}$

PLF remnant distributions from evaporative decay
Add Z of evaporated particles (LCP) to Z of emitter remnant. Feasible for mean values $<Z>$.

Stable $<Z> \approx Z_{\text{proj}}$. Decrease by IMF cluster emission.
Equilibrium and Non-Equilibrium Cluster Emission

2 cluster emission mechanisms: Sequential from PLF and TLF plus hard pre-equilibrium spectrum $E_0 \gg T$ (3rd source)

Typical cluster: ^{16}O with thermal spectrum

W. Udo Schröder, 2003
Equilibrium and Non-Equilibrium Nucleon Emission

197Au+208Pb, E/A=29 MeV

$v_{\text{beam}} = 7.5 \text{ cm/ns}$

Triple kinem. coincidence: PLF-TLF-neutron.

$T \approx 2 \text{ MeV}$,

$m_n(\text{PLF}) \approx m_n(\text{TLF}) \approx 4$

- PLF or TLF evaporation
- Non-equilibrium (Fermi jets?), high energy neutrons
Understanding the Dynamics (?)

• Qualitative description of some systematic aspects possible with Nucleon Exchange Model, also BUU, BNV, etc.

• But no consistent modeling of significant reaction features (e.g., fast particle and cluster emission) achieved as yet.

• Have identified important trends, probably similar physics and transition to new phenomena at E/A = 50-100 MeV.
Thermodynamics of Nuclear Decay

- Approach to thermal and chemical equilibrium
- Consequences of the equation of state of hot nuclear matter
- Limiting temperatures, apparent heat capacities
- Isospin dependence
- (Academic considerations)

No satisfactory explanation is offered by existing statistical models on:
- massive fragment emission vs. proton and LCP emission
- Limiting temperatures, unusual (negative) heat capacities?
Limiting Excitations/Temperatures?

\[^{197}\text{Au} + ^{86}\text{Kr} \quad E/A = 39,55 \text{ MeV} \]

The \(M_n - M_{\text{lcp}} \) distribution should reflect \(E^* \) distribution.

Puzzle: Why do multiplicities not increase \(\propto \frac{E}{A} \)?

Where does energy go?

\[\rightarrow \text{IMF-cluster emission} \]
Regions in m_n/m_{lcp} plane correspond to regions in excitation energy of reaction fragments.

For $m_{\text{IMF}} = 3, 4, ..., 12$, no change in illuminated E^* region.

Difficult to understand: statistical competition clusters and light particles.

→ spontaneous multi-fragmentation?
Alternative: Entropy-Driven Cluster Emission

\[S = S_{\text{mono}N} \]

\[S_{\text{Saddle,diN}} = S_{\text{mono}N} + \Delta S \]

Weisskopf emission probability

\[p \propto e^{\Delta S} = e^{-\frac{B_{\text{Eff}}}{T}} \]

Effective barrier for emission

\[B_{\text{Eff}} = -T \Delta S \]

W. Udo Schröder, 2003
Interacting Fermi Matter (Harmonic Approximation)

\[E_{\text{Total}}^* = E_{\text{Compressional}}^* + E_{\text{Thermal}}^* \]

\[E_{\text{Compressional}}^* = -E_{\text{Binding}} \left(1 - \frac{\rho}{\rho_o}\right)^2 \]

\[E_{\text{Thermal}}^* = a T^2 \quad | \text{Level density parameter } a = a_o \left(\frac{\rho}{\rho_o}\right)^{-\frac{2}{3}} \]

Entropy:
\[S = 2 \sqrt{a E_{\text{Thermal}}^*} = 2 \sqrt{a (E_{\text{Total}}^* - E_{\text{Compressional}}^*)} \]

Thermodynamic Equilibrium:
\[\frac{\partial S}{\partial \rho} = 0 \rightarrow \rho_{\text{Equil}} \]

W. Udo Schröder, 2003
Equilibrium Density of Interacting Fermi Matter

Equilibrium Nuclear Density

\[
\frac{\rho_{eq}}{\rho_o} = \frac{1}{4} \left(1 + \sqrt{9 - 8 \frac{E_{Total}}{E_{Binding}}} \right)
\]

\[S = 2 \sqrt{a \cdot E_{therm}} \]

Level Density Parameter

\[
a = a_{Volume} + a_{Surface}
\]

\[= (A \alpha_V + A^3 \alpha_S) \left(\frac{\rho}{\rho_o} \right)^{-\frac{2}{3}} \]

Density drops to 25% before disassembly

W. Udo Schröder, 2003
Caloric Curve for the Fermi Matter

\[
T = \sqrt{\frac{E_{\text{Total}}^*}{a}} = \left(\frac{\rho_{\text{Equil}}}{\rho_o}\right)^{-\frac{1}{3}} \frac{1}{\sqrt{a_o}} \sqrt{E_{\text{Total}}^* - E_{\text{Bind}}(1 - \frac{\rho_{\text{Equil}}}{\rho_o})^2}
\]

Non-monotonic relation \(E_{\text{total}}^* \leftrightarrow T\)

Limiting temperature: nucleus disassembles into nucleons

Depends on \(E_{\text{Bind}}\) (isospin dependence)

Apparent heat capacity can be \(C < 0\)

A = 208
Cluster Decay of Excited Nuclei

Entropy per nucleon for
- $^{208}\text{Pb}^{*}$ parent mono-nucleus
- Transition state: ^{192}W residue in nuclear contact with ^{16}O cluster

→ True saddle-point

Entropy S/A vs. total excitation E^*/A

Potential Energy of Test Particle $\text{W}+\text{O}$

V_{Coul}, V_{Nuclear}, V_{Total} vs. distance from residue (fm)
Effective Emission Barriers

Dramatic entropy gains at high T favor cluster emission
For $E^*/A > 5$ MeV, the emission of 16O from 197Au is more likely than proton emission!
Some Academic Considerations

If one could confine nuclear matter \((A, Z)\) in a box with perfectly reflecting walls \((V=V_{\text{liqu}}+V_{\text{gas}}=\text{const.}, T=\text{const.})\) → equilibration to maximum entropy

\[
F = E^*_{\text{total}} - T \cdot S = E^*_{\text{compr}} + E^*_{\text{therm}} - 2aT^2
\]

\[
E^*_{\text{compr}} - aT^2 = E_{\text{bind}}(1 - \rho/\rho_0)^2 - a_0(\rho/\rho_0)^{-2/3}T^2
\]

\[
F_{\text{gas}} = A_{\text{gas}} \varepsilon_{\text{Bind}} \left(1 - \frac{A_{\text{gas}}}{V_{\text{gas}} \rho_0}\right)^2 - A_{\text{gas}} a_0 \left(\frac{A_{\text{gas}}}{V_{\text{gas}} \rho_0}\right)^{-2/3} T^2
\]

\[
F_{\text{liqu}} = A_{\text{liqu}} \varepsilon_{\text{Bind}} \left(1 - \frac{A_{\text{liqu}}}{V_{\text{liqu}} \rho_0}\right)^2 - A_{\text{liqu}} a_0 \left(\frac{A_{\text{liqu}}}{V_{\text{liqu}} \rho_0}\right)^{-2/3} T^2
\]

W. Udo Schröder, 2003
Isotherms of Confined Nuclear Fermi Matter

Real gas of interacting nucleons in confined volume V, T-const.

Compression leads to liquefaction. Results automatically from minimization of $F = F_{\text{liqu}} + F_{\text{gas}}$.

Maxwell construction not necessary.
Liquid-Gas Coexistence Line of Fermi Matter

Critical exponent $\alpha = 0.5$ for $\rho(T-T_c)$
Understanding the Thermodynamics (?)

- Found that expansion of hot nuclear matter changes decay pattern significantly ΔS, ΔS_{surf}

- Entropy-driven decay favors clusters over simple particles

- Exact mechanism of cluster decay not determined as yet.

- If one can establish mechanism, then new access to (isospin) nuclear EOS.